SecondSight VGA

Low-Level Command Interface & Firmware Documentation
August 10, 1995

GetStatus
C: int _GetStatus(vga_status_rec *stat_rec)

Size: $01 bytes
$00: $00 Command Code

Return data:
(the following data is stored starting at the pointer stat_rec)

$00: 'G' Ascii values of the letters, used as an identification
$01: 'S' that a Second Sight card is in fact installed in this machine
$02: 'V
$03:. 'G'
$04: A’
$05: size_rec
Number of bytes of record data that follow
$06: Second Sight Firmware Version Number
bits 7-4: major revision number
bits 3-0: minor revision number
(Example: version 1.0 is $10, version 4.6 = $46)
$07: emul_status
0 = emulating, !0 = not emulating
$08: vga_mode
Mode number of last set video mode
$09: video_ram
0=512K, 1=1MB
$0A: monitor_type
IS_VGA (0x10) VGA monitor
0x00 AppleColor RGB monitor

Looks for a Second Sight video card in the current system. If no card is found,
this routine returns a -1.

SetMode

C: void _SetMode(int modeNum, int emulFlag)
Size: $03 bytes

$00: $01 Command Code

$01: $XX Screen Mode to Switch To
(VGA BIOS Screen Mode Parameter)

$01 - 40x25

$03 - 80x25

$53 - 640x480x256 (VGA only)
$13 - 320x200x256

$61 - 640x400x256

$FA - 560x192x16

$FB - 280x192x16

$FC - 40x24

$FD - 80x24

$FE - 640x200

$02: $EE Emulation Flag
$01 = Do not emulate the current Apple Il video mode
$00 = Emulate current Apple Il video mode

Upload Code/Data
C: _UploadData(int flag, void *dst, longword len, void *src)
Size: $0B bytes

$00: $02 Command Code

$01: $XX Code/Data Flag

$02: $0ABBCC Address in Z180 memory to put data

$05: $OLLLLL Length of data block to transfer

$08: $AABBCC Address in IIGS memory to take data from

Flags: FL_CODE = 0,FL_DATA = 1

Transfers a block of data from the IIGS memory address src, and length len, to
the Second Sight card. If the "Code/Data" flag is FL_DATA, the dst address
refers to an offset in the VGA controller's video memory. If the "Code/Data" flag
is FL_CODE, the dst is a direct Z180 address.

Caution!: Due to the fact that the 1MB of video memory is bank switched in two
512K pieces during thhis operation (at address 0x080000), you cannot transfer
data across the 512K boundary. If you do transfer data across this boundary,
the Z180's DMA controller will wrap around to address zero, overwriting the
firmware, and you will crash the Second Sight (and thus the IIGS).

For example, if you wanted to transfer 768K of data from the IIGS to address
0x010000 in the VGA memory, you would need to do two transfers:

0x070000 bytes at address 0x010000
0x050000 bytes at address 0x080000

Second Sight will see that the first transfer starts at less than bank 08, and will
select the low VGA memory bank. On the second transfer, it will see that the

bank is 08 or above and select the high VGA memory bank. Second Sight
cannot switch banks in the middle of a transter, thus the need for you to break
up the transfer.

(In the future, the _UploadbData command may handle this automatically, in
which case the two separate transfers would still be compatible, but just an
extra step).

The C library routine vgaUploadvideoData automatically handles this
necessity; see the library docs for details.

Upload Bitmap (Not currently implemented)
Size: $08 bytes

$00: $0

$01: $LLLL Number of lines in the bitmap

$03: SWWWW Width (# bytes wide screen is, minus # bytes pixmap)
$05: $OAAAAAA Starting address in VGA memory (vga memory only)

Scroll Screen
C: void _ScrollScreen(void *src, void *dst, longword length)
Size: $0A bytes

$00: $03 Command Code

$01: $0SSSSS Offset in VGA memory to begin move at
$04: $0DDDDD Destination of copy command

$07: $OLLLLL Number of bytes to move

Scrolls the entire contents of the screen in a direction specified by the two
parameters. The caller is responsible for clearing the sections of the screen that
should be cleared.

Effectively, to scroll the screen by pixel values, the final offset to use in the
memory copy command is:

v * num_pixels_per_line + h

This routine only works in the lower 512K of video memory, as of ROM version
1.1. There is currently no way to move data above the 512K boundary.

Screen Off

C: void _ScreenOff (void)

Size: $01 bytes
$00: ‘$04 Command Code

Disables screen output. This can be useful for those situations where you want
to "smoothly" change the screen mode, or fill the screen with data, and then
show it all at once. Also, since screen output is disabled, accesses to the video
memory will not have to wait for video refresh cycles, speeding up throughput
somewhat (at a 1MB/sec maximum DMA transfer speed, this shouldn't really
affect throughput much, if at all).

Screen On

C: void _ScreenOn(void)

Size: $01 bytes

$00: $05 Command Code

Reenables screen output.

SetPalette
C: void _SetPalette(rgb_24 *palette)
Size: $04 bytes

$00: $06 Command Code
$01: $AABBCC Address in IIGS memory of palette data
256 entries of 3 bytes each, or 768 bytes

Uploads a complete new palette to the VGA controller. The palette consists of
256 palette entries, each three bytes. The bytes are:

$00: Red
$01: Green
$02: Blue

The RGB values have a full 8-bit width, so there are a maximum of 16 million
colors to select from.

SetPaletteEntry

C: _SetPaletteEntry(int entry, rgb_32 triplet)

Size: $05 bytes

$00: $07 Command Code
$01; $PN Palette entry number to change
$02: SAABBCC One RGB triplet

Modifies a single VGA palette entry in the VGA controller. The palette entry
consists of three bytes:

$02: Red
$03: Green
$04: Blue

The RGB values each have a full 8-bit width, so there are a maximum of 16.7
million colors to select from.

SetBorder
C: _SetBorder (int entry)

Size: $02 bytes

$00: $08 Command Code
$01: $XX Palette entry color used to describe the border color
‘Run Code

Size: $06 bytes

$00: $09 Command Code

$01: $AA Value of CBR register

$02: $BB Value of CBAR register

$03: $CC Value of BBR register

$04: SAABB Address in Z180 memory to CALL to

CBR, CBAR, and BBR must be carefully set to avoid crashing the Second Sight
board. The lower nibble of CBAR MUST be 2 (indicating that the first bank-
switched area starts at $2000). This is because the Second Sight's command
interpreter and interrupt firmware reside from $0000 - $1FFF in the address
space. Once your code is running, you can change this if you disable interrupts
and are careful to.restore state before executing the 'RET" instruction.

As of ROM 1.1, this routine does appear to work.

Clear Screen

C: void _ClearScreen(int color, void *dst, longword len)

Size: $08

$00: $0A Command Code

$01: $CC Color to set the pixels to

$02: $0ABBCC Address to start setting pixels at
$05: $OLLLLL Number of bytes to set to that value

Sets the range of video memory starting at address dst and of length 1en to
color (a byte value).

This routine only works in the lower 512K of video memory.

SetShadow
C: void _SetShadow(int flag)
Size: $02
$00: $0B Command Code
$01: $XX 0 = GS Video shadowing will occur
4 = do not shadow GS video data writes
SetVGAReg
C: void _SetVGAReg(int idx, int idxval, int reg, int val)

An index/register pair is specified, as well as a value to store into that VGA
register.

Size: $07

$00: $0C Command Code

$01: $IL low byte of index register

$02: $IH high byte of index register

$03: $li Index register value

$04: $RL Low byte of register address

$05: $RH high byte of register address

$06: $VV Value to store into register
GetVGAReg

C: int _GetVGAReg(int idx, int idxval, int reg)

An index/register pair is specified, and the value of the register is returned.

Size: $06

$00: $0D Command Code

$01: $IL low byte of index register
$02: $IH high byte of index register
$03:'$ll Index register value

$04: $RL Low byte of register address
$05: $RH high byte of register address
Return value:

$00: $Vvv Value returned from register
SetUserMode

C: void _SetUserMode (vga_mode_rec *table)
Size: $01

$00: $0E Command number
Followed by 84 bytes of mode selection data (see vga_mode_rec).

WARNING: Some cheap VGA monitors can actually blow up their circuit boards
if you pass bogus data to this routine and then call _SetMode(OxFF,1). BE
SURE YOU KNOW WHAT YOU ARE DOING!! IF YOU DON'T KNOW
WHAT YOU'RE DOING, STICK WITH THE PROVIDED VIDEO
MODES. Sequential Systems will accept no responsibility for
monitors damaged in this way.

Multi-Sync monitors and the AppleColor RGB monitor are robust enough to
handle garbage mode settings appropriately (the AppleColor will shut down,
MultiSyncs will try to sync and if they fail will do nothing).

This routine may, in the future, checksum the mode data as an aid to preventing
accidentally passing bad data through should the machine crash or what-not.

SetTextFont
Size: $04

$00: $OF
$01: $XX Font.number to select

Sets the current text font used by the Second Sight. The values for XX are as
follows:

$00: Standard ROM font
$01: Alternate ROM font
$02: Standard PC ANSI Font

$03: User Uploaded Font (must be at address $00F000 in the SRAM)
If a text mode is currently active, the font change takes place immediately.

This function is not implemented as of ROM 1.1.

7180 Memory Map

The :following two tables diagram the Second Sight's memory map as
seen by the Z180 processor.

$000000

$SO1FFFF
$040000

$SOSFFFF
$060000

SO7FFFF
$080000

SQFFFFF

SRAM Map

Bank O
$0000 -
$0400 -
$0C00 -

$2000 -
$6000

$C000 -
SFFFF

Bank 1
$0000
$2000 -

$03FF
$OBFF
$1FFF
$SFFF

$SCFFF

SOFFF

128K SRAM - IIGS video shadowing, program
storage (see diagram below)

a softswitch - do not modify!!!

128K EPROM -

VGA Video Memory

misc. code, interrupt vectors, stack
Text pages 1 and 2 shadow buffers
Command handler firmware, interrupt
handlers

Hires Page 1 and Page 2 shadow buffers
Misc. Shadowing code

Video _mode _table storage

free space :
Super Hires/Double Hires Shadow buffers

$A000 - $BFFF SHR Shadowing code (only when SHR
Shadowing is active and running)

$C000 Free Space

SFFFF

If you can guarantee that a particular IIGS video page will not be
written to by your program, you can put code there. Otherwise, to
use the video page areas for program storage you must make the
_SetShadow call and disable video shadowing (Second Sight V1.1
EPROM and Lattice or greater). With shadowing inactive, you may
use much of Bank O (both hires pages, and $D000-$FFFF) and all of
Bank 1.

The SHR Shadowing code is copied to its running place when
emulation is enabled and SHR mode is turned on. When SHR mode is
off, or emulation is disabled, the area from $A000 - $BFFF in bank 1

is unused.

